Classification of Multi-spectral, Multi-temporal and Multi-sensor Images Using Principal Components Analysis and Artificial Neural Networks: Beykoz Case
نویسندگان
چکیده
The thematic maps derived from remotely-sensed images are invaluable sources of information for various investigations since they provide spatial and temporal information about the nature of Earth surface materials and objects. The robustness of classification techniques used to produce these thematic maps can be crucial especially for complex classification problems. This study aims to determine the level of contributions of multi-temporal and multi-sensor data together with their principal components for Maximum Likelihood and Artificial Neural Network classifiers. The performance of a multi-layer perceptron that learns the characteristics of the data using backpropagation algorithm is compared to that of Maximum Likelihood classifier in identifying major land cover classes present in the study area, Beykoz district of Istanbul, Turkey. The image data available for the study are from Landsat ETM+ and Terra ASTER images. Image band combinations are inputted to the neural network for training and the success of the classification is tested using test data sets. Results show that the neural network approach is an attractive and effective way of extracting land cover information using multi-spectral, multi-temporal and multi-sensor satellite images. It is also observed that the level of contribution of principal components to the results is much less than the contribution of multi-temporal data in terms of the classification accuracy. * Corresponding author
منابع مشابه
vegetation change detection using multi-temporal remotly sensed data during recent three decades by artificial intelligence technique (Case study: protected area of Bashgol)
Quantitative and qualitative information of vegetation and its changes in duration of time as a basic foundation of determination of habitat quality, priority of protected area and also determination of price of ecosystem services in order to optimum management of natural resources and sustainable development is a very important technical point. In other hand, researchers are interested in rem...
متن کاملThe Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
متن کاملMulti-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...
متن کاملIdentification of Houseplants Using Neuro-vision Based Multi-stage Classification System
In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کامل